Partial Differential Equations - Midterm exam

You have 2 hours to complete this exam. Please show all work. Each question is worth 25 points for a total of 100 points. Be sure to quote clearly any theorems you use from the textbook or class. Good luck!

(1) Using $\frac{1}{\sqrt{2}}$, $\{\sin(kx), \cos(kx)\}_{k \in \mathbb{N}}$ as your basis for $L^2([-\pi, \pi])$

a) State and prove Bessel's inequality.

b) State and prove Parseval's inequality. You may use the fact the basis is complete without proof.

(2) The telegrapher's equation $u_{tt} + au_t = c^2 u_{xx}$ with a > 0 models the vibration of a string under frictional damping.

a) Assume for solutions to this equation that there exists $\alpha > 1/2$ and C(t) > 0such that $|u_t(t,x)|, |u_x(t,x)| \leq \frac{C(t)}{|x|^{\alpha}}$ for each fixed t and all sufficiently large $|x| \gg 0$. Show that under these assumptions the wave energy is a non increasing function of t. Recall that the wave energy is given by

$$E(t) = \int_{-\infty}^{\infty} \frac{1}{2} \left(u_t^2 + c^2 u_x^2 \right) \, dx. \tag{0.1}$$

b) Prove uniqueness of such solutions to the initial value problem for the telegrapher's equation.

(3) a) Find a solution to the initial value problem

$$u_t + u_x = 0$$
 $u(1, x) = \frac{x}{1 + x^2}.$

b) Solve the initial value problem

$$u_t + 2u_x = 1$$
 $u(0, x) = e^{-x^2}$.

(4) a) Let

$$v_n(x) = \frac{2nx}{1+n^2x^2}.$$
 (0.2)

What does the sequence $v_n(x)$ converge to as $n \to \infty$? Does the sequence converge pointwise? Uniformly? Justify your answer.

b) Compute the Fourier series of f(x) = x on the interval $[-\pi, \pi]$. Write down explicitly to what function the Fourier series converges, draw the function, and justify the convergence by stating the appropriate theorem.