Partial Differential Equations - Midterm exam

You have 2 hours to complete this exam. Please show all work. Each question is worth 25 points for a total of 100 points. Be sure to quote clearly any theorems you use from the textbook or class. Good luck!
(1) Using $\frac{1}{\sqrt{2}},\{\sin (k x), \cos (k x)\}_{k \in \mathbb{N}}$ as your basis for $L^{2}([-\pi, \pi])$
a) State and prove Bessel's inequality.
b) State and prove Parseval's inequality. You may use the fact the basis is complete without proof.
(2) The telegrapher's equation $u_{t t}+a u_{t}=c^{2} u_{x x}$ with $a>0$ models the vibration of a string under frictional damping.
a) Assume for solutions to this equation that there exists $\alpha>1 / 2$ and $C(t)>0$ such that $\left|u_{t}(t, x)\right|,\left|u_{x}(t, x)\right| \leq \frac{C(t)}{|x|^{\alpha}}$ for each fixed t and all sufficiently large $|x| \gg 0$. Show that under these assumptions the wave energy is a non increasing function of t. Recall that the wave energy is given by

$$
\begin{equation*}
E(t)=\int_{-\infty}^{\infty} \frac{1}{2}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x \tag{0.1}
\end{equation*}
$$

b) Prove uniqueness of such solutions to the initial value problem for the telegrapher's equation.
(3) a) Find a solution to the initial value problem

$$
u_{t}+u_{x}=0 \quad u(1, x)=\frac{x}{1+x^{2}}
$$

b) Solve the initial value problem

$$
u_{t}+2 u_{x}=1 \quad u(0, x)=e^{-x^{2}}
$$

(4) a) Let

$$
\begin{equation*}
v_{n}(x)=\frac{2 n x}{1+n^{2} x^{2}} \tag{0.2}
\end{equation*}
$$

What does the sequence $v_{n}(x)$ converge to as $n \rightarrow \infty$? Does the sequence converge pointwise? Uniformly? Justify your answer.
b) Compute the Fourier series of $f(x)=x$ on the interval $[-\pi, \pi]$. Write down explicitly to what function the Fourier series converges, draw the function, and justify the convergence by stating the appropriate theorem.

